

Artificial Intelligence

Lecture 2 – Problem Solving and Search

Outline

● Search problems
● Definition of a search problem
● State space
● Uninformed search methods

● breadth first search
● depth first search

Problem-solving and Search

● Search is a universal problem-solving technique
(weak method)

● Search (uninformed and informed) involves
systematic trial and error exploration of alternative
solutions

● Useful when the sequence of actions required to
solve a problem is not known a priori
● path finding problems, e.g. eight puzzle, travelling

salesman problem
● two player games, e.g. chess and checkers
● constraint satisfaction problems, e.g. eight queens

Example Search Problems

● Route planning ● Eight Puzzle

Problem Formulation

● A search problem is defined in terms of states,
operators and goals

● A state is a complete description of the world
for the purposes of problem-solving
● the initial state is the state the world is in when

problem solving begins
● a goal state is a state in which the problem is

solved

● an operator is an action that transforms one
state of the world into another state

Goal States

● Depending on the number of solutions a problem
has, there may be a single goal state or many goal
states:
● in the eight-puzzle there is a single solution and a

single goal state
● in chess, there are many winning positions, and hence

many goal states

● To avoid having to list all the goal states, the goal
is often specified implicitly in terms of a test on
states which returns true if the problem is solved
in a state

Applicable Operators

● In general, not all operators can be applied in all
states
● in a given chess position, only some moves are

legal (as defined by the rules of chess)
● in a given eight-puzzle configuration, only some

moves are physically possible

● The set of operators which are applicable in a
state s determine the states that can be
reached from s

Example: Route Planning

● states: ‘being in X’, where X
is one of the cities

● initial state: being in Arad

● goal state: being in
Bucharest

● operators: actions of driving
from city X to city Y along the
connecting road

● e.g, driving from Arad to Sibiu

Choice of Operators and States

● If we consider other ways of solving the problem
(e.g., flying or taking the train) we would need to
change the set of operators as there are more
actions we can perform in each state

● Changing the operators often involves changing
the set of states
● if we allow train journeys, we would need to know

when we were in a given city - ‘being in city X at time T’
- so that we could work out which trains we could take

● if we allow taking a plane, we need to know which
towns have airports

Example: Eight Puzzle

● states: position of each tile and the
blank tile, e.g., [(tile7 at 1, 3) (tile2
at 2, 3) … (tile1 at 3, 1)]

● initial state: initial positions of tiles

● goal state: tiles arranged in order,
with the blank a top left

● operators: actions of moving a tile
in a given position in each possible
direction (up, down, left, right)

State Space

● The initial state and set of operators together
define the state space
● the set of all states reachable from the initial state

by any sequence of actions

● A path in the state space is any sequence of
actions leading from one state to another

● Even if the number of states is finite, the
number of paths may be infinite
● e.g., if it possible to reach state B from state A and

vice versa

Definition of a Search Problem

● A search problem is defined by:
● a state space (i.e. an initial state or set of initial

states and a set of operators)
● a set of goal states (listed explicitly or given

implicitly by means of a property that can be applied
to a state to determine if it is a goal state)

● A solution is a path in the state space from an
initial state to a goal state

Goals and Solutions

● It is important to understand the difference between
goals and solutions

● The goal is what we want to achieve
● a particular arrangement of tiles in the eight-puzzle,

being in a particular city in the route planning problem,
winning a game of chess, etc.

● A solution is a sequence of actions (operator
applications) that achieve the goal
● how the tiles should be moved in the eight-puzzle, which

route to take in the route planning problem, which
moves to make in chess etc.

Example State Space

● Route Planning Problem
● states: ‘being in X’, where X is one of the cities
● initial state: being in Arad
● goal state: being in Bucharest
● operators: driving from city X to city Y along the

connecting roads
– e.g, driving from Arad to Sibiu

● state space: is the set of all paths starting from Arad
● solution: if we place no constraints on the length of the

route, any path from Arad to Bucharest is a solution

Exploring the State Space

● Search is the process of exploring the state space to
find a solution

● Exploration starts from the initial state
● The search procedure applies operators to the initial

state to generate one or more new states which are
believed to be nearer to a solution

● The search procedure is then applied recursively to the
newly generated states

● The procedure terminates when either a solution is
found, or no operators can be applied to any of the
current states

Search Trees

● The part of the state space that has been explored by a search
procedure can be represented as a search tree

● Nodes in the search tree represent paths from the initial state (i.e.,
partial solutions) and edges represent operator applications

● The process of generating the children of a node by applying
operators is called expanding the node

● The branching factor of a search tree is the average number of
children of each non-leaf node

● If the branching factor is b, the number of nodes at depth d is bd

Example: State Space

● initial state: A

Example: Search Tree

States and Nodes

● states in the state space represent states of the world

● nodes in the search tree are data structures maintained by
a search procedure representing paths to a particular state

● The same state can appear in several nodes if there is
more than one path to that state

● The nodes of a search tree are often labelled with only the
name of the last state on the corresponding path

● The path can be reconstructed by following edges back to
the root of the tree

Example: Labelling Nodes

Eliminating Loops

● paths containing loops take us back to the same
state and so can contribute nothing to the solution
of the problem
● e.g., the path A, B, A, B is a valid path from A to B but

does not get us any closer to, say F, than the path A, B

● For some problems, e.g., the route planning
problem, eliminating loops transforms an infinite
search tree into a finite tree

● However eliminating loops can be computationally
expensive

Example: Eliminating Loops

Solving Search Problems

● Many different search techniques have been
developed to explore a state space
● uninformed (blind) search
● informed (heuristic) search
● GAs and other local search methods
● stochastic search

● A search procedure which is guaranteed to find
a solution (if one exists) is said to be complete

Breadth-first Search

● Proceeds level by level down the search tree
● First explores all paths of length 1 from the root

node, then all paths of length 2, length 3 etc.
● Starting from the root node (initial state)

explores all children of the root node, left to
right

● If no solution is found, expands the first
(leftmost) child of the root node, then expands
the second node at depth 1 and so on …

Example: Simple Route Planning

● initial state: A
● goal state: F

Example: Breadth-first Search

Nodes reachable from B Open list

Nodes reachable fom C

State, Search Problem & Node

// a search problem

class SearchProblem{

public State initialState();

public booleangoalTest(State s);

public List<Op> operators();

}

// a search tree node

class Node{

public State state();

public Node parent();

public List<Node> expand(List<Op> ops);

}

Breadth-first Search Algorithm

// pseudocodeimplementing breadth­first search

public Node breadthFirstSearch(SearchProblemproblem) {

List<Node> nodes

 = new LinkedList<Node>(new Node(problem.initialState()))

while(true) {

if (nodes.size() == 0) then { return failure }

Node node = nodes.removeFirst()

if (problem.goalTest(node.state()) then { return node }

// Note that new nodes are added to the end of the queue

nodes.addAllToEnd(node.expand(problem.operators())

}

}

Properties of Breadth-first Search

● Breadth-first search is complete (even if the
state space is infinite or contains loops)

● It is guaranteed to find the solution requiring the
smallest number of operator applictions

● Time and space complexity is O(bd) where d is
the depth of the shallowest solution

● Severely space bound in practice, and often
runs out of memory very quickly

Depth-first Search

● Proceeds down a single branch of the tree at a time
● Expands the root node, then the leftmost child of the

root node, then the leftmost child of that node etc.
● Always expands a node at the deepest level of the

tree
● Only when the search hits a dead end (a partial

solution which can’t be extended) does the search
backtrack and expand nodes at higher levels

Example: Depth-first Search

Nodes reachable from B

Nodes reachable from D

Depth-first Search Algorithm

// pseudocodeimplementing depth­first search

public Node depthFirstSearch(SearchProblemproblem) {

List<Node> nodes

 = new LinkedList<Node>(new Node(problem.initialState()))

while(true) {

if (nodes.size() == 0) then { return failure }

Node node = nodes.removeFirst()

if (problem.goalTest(node.state()) then { return node }

// Note that new nodes are added to the front of the queue

nodes.addAllToFront(node.expand(problem.operators())

}

}

Properties of Depth-first Search

● Depth-first search requires much less memory than
breadth-first search - space complexity is O(bm)
where m is the maximum depth of the tree

● Time complexity is O(bm)
● However depth-first search is not complete (unless

the state space is finite and no contains loops)
● we may get stuck going down an infinite branch that

doesn’t lead to a solution

● Even if the state space is finite and contains no loops,
the first solution found by depth-first search may not
be the shortest

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

